Path polynomials of a graph
نویسندگان
چکیده
منابع مشابه
The Polynomials of a Graph
In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولEvaluations of Graph Polynomials
A graph polynomial p(G, X̄) can code numeric information about the underlying graph G in various ways: as its degree, as one of its specific coefficients or as evaluations at specific points X̄ = x̄0. In this paper we study the question how to prove that a given graph parameter, say ω(G), the size of the maximal clique of G, cannot be a fixed coefficient or the evaluation at any point of the Tutte...
متن کاملInvestigations of Graph Polynomials
Investigations of graph polynomials Mirkó Visontai Advisor: James Haglund This thesis consists of two parts. The first part is a brief introduction to graph polynomials. We define the matching, rook and hit polynomials, reveal the connection between them and show necessary conditions that imply that all roots of these polynomials are real. In the second part, we focus on the closely related Mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1996
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)00149-9